Research Impact Overview
Our research has significantly influenced the field of cellular and molecular biology, as evidenced by our high citation metrics and global rankings
h-index
i10-index
Total Citations
2020 – Present
Neal, M. L., Shukla, N., Mast, F. D., Farré, J. C., Pacio, T. M., Raney-Plourde, K. E., Prasad, S., Subramani, S., & Aitchison, J. D. Automated, image-based quantification of peroxisome characteristics with perox-per-cell. Bioinformatics (Oxford, England), 40(7), btae442. (2024). PMCID: PMC11269463. PDF
Subramani, S., Shukla, N., & Farré, J. C. Convergent and divergent mechanisms of peroxisomal and mitochondrial division. The Journal of Cell Biology, 222(9), e202304076. (2023). PMCID: PMC10397058. PDF
Farré, J. C., Carolino, K., Devanneaux, L., & Subramani, S. OXPHOS deficiencies affect peroxisome proliferation by downregulating genes controlled by the SNF1 signaling pathway. eLife, 11, e75143. (2022). PMCID: PMC9094750. PDF
Zientara-Rytter, K. M., Mahalingam, S. S., Farré, J. C., Carolino, K., & Subramani, S. Recognition and Chaperoning by Pex19, Followed by Trafficking and Membrane Insertion of the Peroxisome Proliferation Protein, Pex11. Cells, 11(1), 157. (2022). PMCID: PMC8750153. PDF
Farré, J. C., Li, P., & Subramani, S. BiFC Method Based on Intraorganellar Protein Crowding Detects Oleate-Dependent Peroxisomal Targeting of Pichia pastoris Malate Dehydrogenase. International journal of molecular sciences, 22(9), 4890. (2021). PMCID: PMC8124512. PDF
Mahalingam, S. S., Shukla, N., Farré, J. C., Zientara-Rytter, K., & Subramani, S. Balancing the Opposing Principles That Govern Peroxisome Homeostasis. Trends in biochemical sciences, 46(3), 200–212. (2021). PMCID: PMC7880872. PDF
Zientara-Rytter, K., Subramani, S. Mechanistic Insights into the Role of Atg11 in Selective Autophagy. Journal of molecular biology, 432(1), 104–122. (2020). PMCID: PMC6925662. PDF
Wang, X., Wang, P., Zhang, Z., Farré, J. C., Li, X., Wang, R., Xia, Z., Subramani, S., & Ma, C. The autophagic degradation of cytosolic pools of peroxisomal proteins by a new selective pathway. Autophagy, 16(1), 154–166. (2020). PMCID: PMC6984484. PDF
2010 – 2019
Zientara-Rytter, K., Subramani, S. The Roles of Ubiquitin-Binding Protein Shuttles in the Degradative Fate of Ubiquitinated Proteins in the Ubiquitin-Proteasome System and Autophagy. Cells, 8(1), 40. (2019). PMCID: PMC6357184. PDF
Farré, J. C., Mahalingam, S. S., Proietto, M., & Subramani, S. Peroxisome biogenesis, membrane contact sites, and quality control. EMBO reports, 20(1), e46864. (2019). PMCID: PMC6322382. PDF
Zientara-Rytter, K., Subramani, S. AIM/LIR-based fluorescent sensors – new tools to monitor mAtg8 functions. Autophagy, 4: 1074-1078. (2018). PMCID: PMC6103413. PDF
Wang, W., Xia, Z., Farré, J.C., Subramani, S. TRIM37 deficiency induces autophagy through de-regulating the MTORC1-TFEB axis. Autophagy, 14: 1574-1585. (2018). PMCID: PMC6135569. PDF
Farré, J.C., Carolino, K., Stasyk, O.V., Stasyk, O. G., Hodzic, Z., Agrawal, G., Till, A., Proietto, M., Cregg, J., Sibirny, A. A., Subramani, S. A new yeast peroxin, Pex36, a functional homologue of mammalian PEX16, functions in the ER–to-peroxisome traffic of peroxisomal membrane proteins. J. Mol. Biol. 429: 3743–3762. (2017). PMCID: PMC5693695. PDF
Zientara-Rytter, K., Ozeki, K., Nazarko, T.Y., Subramani, S. Pex3 and Atg37 compete to regulate the interaction between the pexophagy receptor, Atg30, and the Hrr25 kinase. Autophagy, 14: 368-384. (2017). PMCID: PMC5915033. PDF
Wang. W., Subramani, S. Role of PEX5 ubiquitination in maintaining peroxisome dynamics and homeostasis. Cell Cycle, 6: 2037-2045. (2017). PMCID: PMC5731411. PDF
Wang, W., Xia, Z., Farré, J.C., Subramani, S. TRIM37, a novel E3 ligase for PEX5-mediated peroxisomal matrix protein import. J. Cell Biol. 216: 2843-2858. (2017). PMCID: PMC5584156. PDF
Farré, J.C., Kramer, M., Ideker, T., Subramani, S. Active Interaction Mapping as a tool to elucidate hierarchical functions of biological processes. Autophagy. 13: 1248–1249. (2017). PMCID: PMC5529073. PDF
Agrawal, G., Shang, H.H., Xia, Z.-J., Subramani, S. Functional regions of the peroxin Pex19 necessary for peroxisome biogenesis. J. Biol. Chem. 292: 11547–11560. (2017). PMCID: PMC5500816. PDF
Wang, W., Subramani, S. Assays to monitor pexophagy in yeast. In Meth. Enzymology. 588: 413-427. (2017). PMCID: PMC5546006. PDF
Kramer, M.H., Farré, J.C., Mitra, K., Yu, M.K., Ono, K., Demchak, B., Licon, K., Flagg, M., Balakrishnan, R., Cherry, J.M., Subramani, S., Ideker, T. Active Interaction Mapping reveals the hierarchical organization of autophagy. Mol Cell, Evolving 65: 761–774. (2017). PMCID: PMC5439305. PDF
Zientara-Rytter, K., Subramani, S. Role of actin in shaping autophagosomes. Autophagy, 12: 2512-2515 (2016). PMCID: PMC5173263. PDF
Farré, J.C., Subramani, S. Mechanistic insights regarding selective autophagy pathways: lessons from yeast. Nature Reviews Mol. Cell Biol., 17: 537–552. (2016). PMC: PMC5549613. PDF
Zientara-Rytter, K., Subramani, S. Autophagic degradation of peroxisomes in mammals. Biochemical Society transactions, 44(2), 431–440. (2016). PMCID: PMC4958620. PDF
Agrawal, G., Fassas, S. N., Xia, Z., Subramani, S. Distinct requirements for intra-ER sorting and budding of peroxisomal membrane proteins from the endoplasmic reticulum. J. Cell Biol., 212: 335-48 (2016). PMCID: PMC4788575. PDF
Lakhani, R., Vogel, K. R., Till, A., Liu, J., Burnett, S. F., Gibson, K. M., & Subramani, S. Defects in GABA metabolism affect selective autophagy pathways and are alleviated by mTOR inhibition. EMBO molecular medicine, 6(4), 551–566. (2014). PMCID: PMC3992080. PDF
Nazarko, T. Y., Ozeki, K., Till, A., Ramakrishnan, G., Lotfi, P., Yan, M., & Subramani, S. Peroxisomal Atg37 binds Atg30 or palmitoyl-CoA to regulate phagophore formation during pexophagy. The Journal of cell biology, 204(4), 541–557. (2014). PMCID: PMC3926955. PDF
Ma, C., Hagstrom, D., Polley, S. G., & Subramani, S. Redox-regulated cargo binding and release by the peroxisomal targeting signal receptor, Pex5. The Journal of Biological Chemistry, 288(38), 27220–27231. (2013). PMCID: PMC3779719. PDF
Ma C, Hagstrom D, Polley S G, Subrmanai S: The Journal of Biological Chemistry, Vol. 288, No. 38, pp. 27220–27231, September 2013. PDF
Till, A., Lipinski, S., Ellinghaus, D., Mayr, G., Subramani, S., Rosenstiel, P., & Franke, A. Autophagy receptor CALCOCO2/NDP52 takes center stage in Crohn disease. Autophagy, 9(8), 1256–1257. (2013). PMCID: PMC3748200. PDF
Farré, J. C., Burkenroad, A., Burnett, S. F., & Subramani, S. Phosphorylation of mitophagy and pexophagy receptors coordinates their interaction with Atg8 and Atg11. EMBO reports, 14(5), 441–449. (2013). PMCID: PMC3642380. PDF
Liu, X., Subramani, S. Unique requirements for mono- and polyubiquitination of the peroxisomal targeting signal co-receptor, Pex20. The Journal of biological chemistry, 288(10), 7230–7240. (2013). PMCID: PMC3591631. PDF
Subramani, S., & Malhotra, V. Non-autophagic roles of autophagy-related proteins. EMBO reports, 14(2), 143–151. (2013). PMCID: PMC3566844. PDF
Liu, X., Ma, C., & Subramani, S. Recent advances in peroxisomal matrix protein import. Current opinion in cell biology, 24(4), 484–489. (2012). PMCID: PMC3425728. PDF
Till, A., Lakhani, R., Burnett, S. F., & Subramani, S. Pexophagy: the selective degradation of peroxisomes. International journal of cell biology, 2012, 512721. (2012). PMCID: PMC3320016. PDF
Joshi S., G. Agrawal, and S. Subramani, Phosphorylation-dependent Pex11p and Fis1p interaction regulates peroxisome division. Mol Biol Cell (2012). PDF
Nazarko V.Y., T.Y. Nazarko, J.C. Farré, O.V. Stasyk, D. Warnecke, S. Ulaszewski, J.M. Cregg, A.A. Sibirny, and S. Subramani, Atg35, a micropexophagy-specific protein that regulates micropexophagic apparatus formation in Pichia pastoris. Autophagy 7 (2011) 375-85. PDF
Manjithaya R., and S. Subramani, Autophagy: a broad role in unconventional protein secretion? Trends Cell Biol 21 (2011) 67-73. PDF
Ma C., G. Agrawal, and S. Subramani, Peroxisome assembly: matrix and membrane protein biogenesis. J Cell Biol 193 (2011) 7-16. PDF
Farré J.C., and S. Subramani, Rallying the exocyst as an autophagy scaffold. Cell 144 (2011) 172-4. PDF
Agrawal G., S. Joshi, and S. Subramani, Cell-free sorting of peroxisomal membrane proteins from the endoplasmic reticulum. Proc Natl Acad Sci U S A 108 (2011) 9113-8. PDF
Till A., and S. Subramani, A balancing act for autophagin. J Clin Invest 120 (2010) 2273-6. PDF
Manjithaya R., and S. Subramani, Role of autophagy in unconventional protein secretion. Autophagy 6 (2010). PDF
Manjithaya R., T.Y. Nazarko, J.C. Farré, and S. Subramani, Molecular mechanism and physiological role of pexophagy. FEBS Lett 584 (2010) 1367-73. PDF
Manjithaya R., S. Jain, J.C. Farré, and S. Subramani, A yeast MAPK cascade regulates pexophagy but not other autophagy pathways. J Cell Biol 189 (2010) 303-10. PDF
Manjithaya R., C. Anjard, W.F. Loomis, and S. Subramani, Unconventional secretion of Pichia pastoris Acb1 is dependent on GRASP protein, peroxisomal functions, and autophagosome formation. J Cell Biol 188 (2010) 537-46. PDF
Farré, J.C., Mathewson, R. D., Manjithaya, R., Subramani, S. Roles of Pichia pastoris Uvrag in vacuolar protein sorting and the phosphatidylinositol 3-kinase complex in phagophore elongation in autophagy pathways. Autophagy, in press (2010). PDF
2000 – 2009
Ma, C., Schumann, U., Rayapuram, N., Subramani, S. The peroxisomal matrix import of Pex8p requires only PTS receptors and Pex14p. Mol. Biol. Cell, Aug;20(16):3680-9. Epub 2009 Jul 1, (2009). PDF
Nazarko, T.Y., Farré, J.C., Subramani, S. Peroxisome size provides insights into the function of autophagy-related proteins. Mol. Biol. Cell, Sep;20(17):3828-39. Epub 2009 Jul 15, (2009). PDF
Farré, J.C., Krick, R., Subramani, S., Thumm, M. Turnover of organelles by autophagy in yeast. Curr. Opin Cell Biol., Aug;21(4):522-30. Epub 2009 Jun 8, (2009). PDF
Ma, C. and Subramani, S. Peroxisome matrix and membrane protein biogenesis. IUBMB Life, Jul;61(7):713-22 (2009). PDF
Schumann, U., Subramani, S. Special delivery from mitochondria to peroxisomes. Trends Cell Biol., Jun;18(6):253-6. Epub 2008 May 28 (2008). PDF
Baker, M.E., Subramani, S. A structural balancing act: activity versus peroxisomal targeting of carbonyl reductase. Structure, 16(3):331-332 March 11 (2008). PDF
Farré, J.C., Manjithaya, R., Mathewson, R.D., Subramani, S. PpAtg30 tags peroxisomes for turnover by selective autophagy. Dev. Cell, 14: 365-76 (2008). PDF
Yan, M., Rachubinski, D. A., Joshi, S., Rachubinski, R.A., Subramani, S. Dysferlin domain-containing proteins, Pex30p and Pex31p, localized to two compartments, control the number and size of oleate-induced peroxisomes in Pichia pastoris. Mol. Biol. Cell, Dec 19; [Epub ahead of print] (2007). PDF
Subramani, S., Farré, J.C. A ubiquitin-like protein involved in membrane fusion. Cell 130: 7-9 (2007). PDF
Léon, S., Suriapranata, I., Yan, M., Rayapuram, N., Patel, A., Subramani, S. Characterization of protein-protein interactions: Application to the understanding of peroxisome biogenesis, in Pichia Protocols, (Cregg, J. M. ed.), 2nd edition, Humana Press, Totowa, NJ, Ch 16, pp 219-37 (2007). PDF
Léon, S., Subramani, S. The role of shuttling targeting signal receptors and heat-shock proteins in peroxisomal matrix protein import. The Enzymes, Vol XXV, Chapter 20, 513-528 (2007). PDF
Farré, J.C., Shirahama-Noda, K., Zhang, L., Booher, K., Subramani, S. Localization of proteins and organelles using fluorescence microscopy, in Pichia Protocol, (Cregg, J. M. ed.), 2nd edition, Humana Press, Totowa, NJ, Ch. 17, pp239-49 (2007). PDF
Rayapuram, N., Subramani, S. Peroxisomes, organization and transport in neurons. Encyclopedia Neurosci., Elsevier, in press (2007). PDF
Farré, J.C., Vidal, J., Subramani, S. A cytoplasm to vacuole targeting pathway in P. pastoris. Autophagy, , 3(3):230-4 (2007). (2007). PDF
Nazarko, T.Y., Farré, J.C., Polupanov, A.S., Sibirny, A.A., Subramani, S. Autophagy-related pathways and specific role of sterol glucoside in yeasts. Autophagy, 3(3):263-5 (2007). PDF
Nazarko, T.Y., Polupanov, A.S., Manjithaya, R.R., Subramani, S., Sibirny, A.A. The requirement of sterol glucoside for pexophagy in yeasts is dependent on the species and nature of peroxisome inducers. Mol. Biol. Cell 18: 106-118 (2007). PDF
Léon, S., Subramani, S. A conserved cysteine residue of Pichia pastoris Pex20p is essential for its recycling from the peroxisome to the cytosol. J. Biol. Chem. Jan 5, 282(10):7424-30 (2007). PDF
Stasyk, O. V, Stasyk, O. G., Mathewson, R. D., Farré, J. –C., Nazarko, V. Y., Krasovska, O. S., Subramani, S., Cregg, J. M., Sbirny, A. Atg28, a novel coiled-coil protein involved in autophagic degradation of peroxisomes in the methylotrophic yeast Pichia pastoris. Autophagy, 2:30-38 (2006). PDF
Lin-Cereghino, G. P., Godfrey, L., De la Cruz, B. J., Johnson, S., Khuongsathiene, S., Tolstorukov, I., Yan, M., Lin-Cereghino, J., Veenhuis, M., Subramani, S., Cregg, J. M. Mxr1p: a key regulator of the methanol-utilization pathway and peroxisomal genes in Pichia pastoris. Mol. Cell. Biol., 26: 883-897 (2006). PDF
Rayapuram, N., Subramani, S. The importomer – a peroxisomal membrane complex involved in protein translocation into the peroxisome matrix. Biochim. Biophys. Acta, 1763: 1613-9 (2006). PDF
Léon, S., Goodman, J.M., Subramani, S. Uniqueness of the mechanism of protein import into the peroxisome matrix: transport of folded, co-factor-bound and oligomeric proteins by shuttling receptors. Biochim. Biophys. Acta, 1763: 1552-1564 (2006). PDF
Léon, S., Zhang, L., McDonald, H., Yates III, J., Cregg, J. M., Subramani, S. Dynamics of the peroxisomal import cycle of PpPex20p: ubiquitin-dependent localization and regulation. J. Cell Biol., 172: 67-78 (2006). PDF
Zhang, L., Léon, S., Subramani, S. Two independent pathways traffic the intraperoxisomal peroxin Pex8p into peroxisomes: mechanism and evolutionary implications. Mol. Biol. Cell, 17:690-699 (2006). PDF
Yan, M., Rayapuram, N. and Subramani, S. The control of peroxisome number and size during division and proliferation, Curr. Opin. Cell Biol., 14: 376-383 (2005). PDF
Farré, J.C., Subramani, S. Peroxisome turnover by micropexophagy – an autophagy-related process. Trends Cell Biol., 14: 515-523 (2004). PDF
Subramani, S. Peroxisomes, in Encyclopedia of Biological Chemistry (eds. W.J. Lennarz and M.D. Lane, eds), Elsevier, Oxford, 3: 246-250 (2004). PDF
Klionsky, D. J., Cregg, J. M., Dunn, W. A. Jr., Emr, S. D., Sakai, Y., Sandoval, I. V., Sbirny, A., Subramani, S., Thumm, M., Veenhuis, M. Ohsumi, Y. Unified nomenclature for yeast autophagy-related genes. Dev. Cell 5: 539-545 (2003). PDF
Hazra, P., Suriapranata, I., Snyder, W. and Subramani, S. Peroxisome remnants in pex3D cells and the requirement of Pex3p for interactions between the peroxisomal docking and translocation subcomplexes. Traffic, 3: 560-574 (2002). PDF
Subramani, S., Dammai, V., Hazra, P., Suriapranata, I. and Lee, S. Import of proteins into peroxisomes. In Protein targeting, transport and translocation, (eds. Dalbey, R.E. and von Heijne, G.), Ch. 12, pp. 268-292, Academic Press (2002). PDF
Subramani, S. Hitchhiking fads en route to peroxisomes. J. Cell Biol., 156: 415-417 (2002). PDF
Luers, G., Otte, D.M., Subramani, S. and Franz, T. Genomic organization, chromosomal localization and tissue specific expression of the murine Pxmp2 gene encoding the 22 kDa peroxisomal membrane protein (Pmp22). Gene, 272: 45-50 (2001). PDF
Subramani, S. Self destruction in the line of duty. Dev. Cell, 1: 6-8 (2001). PDF
Dammai, V. and Subramani, S. The human peroxisomal targeting signal receptor, Pex5p, is translocated into the peroxisome matrix and recycled to the cytosol. Cell, 105: 187-196 (2001). PDF
Amery, L., Mannaerts, G.P., Subramani, S., Van Veldhoven, P. P., Fransen, M. Identification of a novel human peroxisomal 2,4-dienoyl-CoA reductase related protein using the M13 phage protein VI phage display technology. Combinatorial Chem. and High Throughput Screening, 4: 545-552 (2001). PDF
Johnson, M.A., Snyder, W.B., Cereghino, J.L., Veenhuis, M., Subramani, S., Cregg, J.M. Pichia pastoris Pex14p, a phosphorylated peroxisomal membrane protein, is part of a PTS-receptor docking complex and interacts with many peroxins. Yeast, 18: 621-641 (2001). PDF
Terlecky, S.R., Legakis, J.E., Hueni, S.E., Subramani, S. Quantitative analysis of peroxisomal protein import in vitro. Exper. Cell Res. 263:98-106 (2001). PDF
Sakai, Y., Subramani, S. Environmental response of yeast peroxisomes: aspects of organelle assembly and degradation. Cell Biochemistry and Biophysics, 32: 51-61 (2000). PDF
Snyder, W.B., Koller, A., Choy, A.J., Subramani, S. The peroxin Pex19p interacts with multiple, integral membrane proteins at the peroxisomal membrane. J. Cell Biol., 149: 1171-1177 (2000). PDF
Koller, A., Velasco, J., Subramani, S. The CUP1 promoter of Saccharomyces cerevisiae is inducible by copper in Pichia pastoris. Yeast, 16: 651-656 (2000). PDF
Subramani, S., Koller, A., Snyder, W.B. Import of peroxisomal matrix and membrane proteins. Annu. Rev. Biochem. 69: 399-418 (2000). PDF
1990 – 1999
Snyder, W.B., Koller, A., Choy, A.J., Johnson, M., Cregg, J.M., Rangell, L., Keller, G.A., Subramani, S. Pex17p is required for import of both peroxisome membrane and lumenal proteins and interacts with Pex19p and the PTS-receptor docking complex in Pichia pastoris. Mol. Biol. Cell, 10: 4005-4019 (1999). PDF
Yamashita, H., Avraham, S., Jiang, S., London, R., Van Veldhoven, P.P., Subramani, S, Rogers, R.A., Avraham, H. Characterization of the human and murine PMP20 peroxisomal membrane proteins that exhibit antioxidant activity in vitro. J. Biol. Chem., 274: 29897-29904 (1999). PDF
Koller, A., Snyder, W.B., Faber, K.N., Wenzel, T.J., Rangell, L., Keller, G.A., Subramani, S. Pex22p of Pichia pastoris, essential for peroxisomal matrix protein import, anchors the ubiquitin-conjugating enzyme, Pex4p, on the peroxisomal membrane. J. Cell Biol., 146: 99-112 (1999). PDF
Lenormand, J.L., Dellinger, R.W., Knudsen, K.E., Subramani, S., Donoghue, D.J. Speedy: a novel cell cycle regulator of the G2/M transition. EMBO J., 18: 1869-1877 (1999). PDF
Koller, A., Spong, A.P., Lüers, G.H., Subramani, S. Analysis of the peroxisomal Acyl-CoA oxidase gene product from Pichia pastoris and determination of its targeting signal. Yeast, 15:1035-1044 (1999). PDF
Snyder, W.B., Faber, K.N., Wenzel, T.J., Koller, A., Lüers, G.H., Rangell, L., Keller, G.A., Subramani, S. Pex19p interacts with Pex3p and Pex10p and is essential for peroxisome biogenesis in Pichia pastoris. Mol. Biol. Cell, 10:1745-1761 (1999). PDF
Fransen, M., Van Veldhoven, P.P., Subramani, S. Identification of peroxisomal proteins using pVI-phage display: Molecular evidence that mammalian peroxisomes contain a 2,4-dienoyl-CoA reductase. Biochem. J., 340: 561-568 (1999). PDF
Subramani, S. Biogenesis of peroxisomes, in Lipid and Protein Traffic, Pathways and Molecular Mechanisms, (ed. J. A. F. Op den Kamp), NATO ASI Series, Vol. H 106, pp65-76, Springer-Verlag (1998).
Fransen, M.F., Terlecky, S.R., Subramani, S. Identification of a human PTS1 receptor docking protein directly required for peroxisomal protein import. Proc. Natl. Acad. Sci. USA, 95: 8087-8092 (1998). PDF
Kostrub, C. F., Knudsen, K., Subramani, S., Enoch, T. Hus1p, a conserved fission yeast checkpoint protein, interacts with Rad1p and is phosphorylated in response to DNA damage. EMBO J., 17: 2055-2066 (1998). PDF
Sakai, Y., Koller, A., Rangell, L.K., Keller, G.A., Subramani, S. Peroxisome degradation by microautophagy in Pichia pastoris: identification of specific steps and morphological intermediates. J. Cell Biol., 141: 625-636 (1998). PDF
Lüers, G.H., Advani, R., Wenzel, T., Subramani, S. The P. pastoris dihydroxyacetone kinase is a PTS1-containing, but cytosolic, protein that is essential for growth on methanol. Yeast, 14: 759-771 (1998). PDF
Elgersma, Y., Elgersma-Hooisma, M., Wenzel, T., McCaffery, J.M., Farquhar, M.G., Subramani, S. A mobile PTS2-receptor for peroxisomal protein import in Pichia pastoris. J. Cell Biol., 140: 807-820 (1998). PDF
Faber, K. N., Heyman, J.A., Subramani, S. The AAA-family peroxins, PpPex1p and PpPex6p, interact with each other in an ATP-dependent manner and are associated with different subcellular membranous structures distinct from peroxisomes. Mol. Cell. Biol. 18: 936-943(1998). PDF
Subramani, S. Components involved in peroxisome import, biogenesis, proliferation, turnover and movement. Physiol. Rev. 78: 171-188 (1998). PDF
Osman, F., Subramani, S. Double-strand break-induced recombination in eukaryotes. Prog. Nucl. Acids Res. and Mol. Biol. 58: 263-299 (1998). PDF
Faber, K. N., Elgersma, Y., Heyman, J. A., Koller, A., Lüers, G. H., Nuttley, W. M., Terlecky, S. R., Wenzel, T. J., Subramani, S. Use of Pichia pastoris as a model eukaryotic system: Peroxisome biogenesis, in Methods in Molecular Biology: Pichia protocols (ed. D. R. Higgins), Humana Press, Totowa, NJ, USA, Ch. 10, pp 121-147 (1998). PDF
Sakai, Y., Subramani, S. Green fluorescent protein (GFP) fluorescence through the rhodamine channel after excitation using the FITC filter set. Tech. Tips Online (http://www.elsevier.com/locate/tto ), T01319 (1997).
Elgersma, Y., Kwast, L., van den Berg, M., Snyder, W.B., Distel, B., Subramani, S., Tabak, H.F. Overexpression of Pex15p, a phosphorylated peroxisomal integral membrane protein required for peroxisomal assembly in S. cerevisiae, causes proliferation of the endoplasmic reticulum membrane. EMBO J., 16: 7326-7341 (1997). PDF
Subramani, S. PEX genes on the rise. Nature Genetics, 15: 331-333 (1997). PDF
Wiemer, E. A.C., Wenzel, T., Deerinck, T. J., Ellisman, M. H., Subramani, S. Visualization of the peroxisomal compartment in living mammalian cells: dynamic behavior and association with microtubules. J. Cell Biol. 136: 71-80 (1997).
Distel, B., Erdmann, R., Gould, S.J., Blobel, G., Crane, D.I., Cregg, J.M., Dodt, G., Fujiki, Y., Goodman, J.M., Just, W.W., Kiel, J.A.K.W., Kunau, W.H., Lazarow, P.B., Mannaerts, G.P., Moser, H., Osumi, T., Rachubinski, R.A., Roscher, A., Subramani, S., Tabak, H.F., Valle, D., van der Klei, I., van Veldhoven, P.P., Veenhuis, M. A unified nomenclature for peroxisome biogenesis. J. Cell Biol. 135: 1-3 (1996). PDF
Terlecky, S. R., Nuttley, W. M., Subramani, S. The requisite cytosolic and membrane components of peroxisomal protein import. Experientia 52: 1050-1054 (1996). PDF
Subramani, S. Protein translocation into peroxisomes. J. Biol. Chem. 271: 32483-32486 (1996). PDF
Wiemer, E.A.C., Lüers, G., Faber, K. N., Wenzel, T., Veenhuis, M., Subramani, S. Isolation and characterization of Pas2p, a peroxisomal membrane protein essential for peroxisome biogenesis in the methylotrophic yeast Pichia pastoris. J. Biol. Chem. 271: 18973-18980 (1996). PDF
Knudsen, K. E., Knudsen, E. S., Wang, J. Y. J., Subramani, S. p34cdc2 kinase activity is maintained upon activation of the replication checkpoint in Schizosaccharomyces pombe. Proc. Natl. Acad. Sci. USA93: 8278-8283 (1996). PDF
Subramani, S. Converging models of peroxisome biogenesis. Curr. Opin. Cell Biol. 8: 513-518 (1996). PDF
Fortunato, E. A., Osman, F., Subramani, S. Analysis of spontaneous and double-strand break-induced recombination in rad mutants of S. pombe. Mutation Res. 364: 147-160 (1996). PDF
Monosov, E., Wenzel, T. J., Lüers, G. H., Heyman, J. A., Subramani, S. Labeling of peroxisomes with green fluorescent protein in living P. pastoris cells. J. Histochem. Cytochem. 44: 581-589 (1996). PDF
Terlecky, S. R., Wiemer, E. A. C., Nuttley, W. M., Walton, P. A., Subramani, S. Signals, receptors and cytosolic factors involved in peroxisomal protein import, in Peroxisomes: Biology and Role in Toxicology and Disease. (eds. J. K. Reddy, T. Suga, G.P. Mannaerts, P.B. Lazarow and S. Subramani) Annals New York Acad. Sci. 804: 11-20 (1996). PDF
Wiemer, E. A. C., Terlecky, S. R., Nuttley, W. M., Subramani, S. Characterization of the yeast and human receptors for the carboxy-terminal, tripeptide peroxisomal targeting signal. Cold Spring Harbor Symp. Quant. Biol. Vol LX, 637-648 (1995). PDF
Rachubinski, R., Subramani, S. How proteins penetrate peroxisomes. Cell, 83: 525-528 (1995). PDF
Kanter-Smoler, G., Knudsen, K. E., Jimenez, G., Sunnerhagen, P., Subramani, S. Separation of phenotypes in mutant alleles of the Schizosaccharomyces pombe cell-cycle checkpoint gene, rad1+, Mol. Biol. Cell, 6: 1793-1805 (1995). PDF
Terlecky, S.R., Nuttley, W. M., McCollum, D., Sock, E., Subramani, S. The Pichia pastoris peroxisomal protein, PAS8p, is the receptor for the carboxy-terminal, tripeptide peroxisomal targeting signal. EMBO J. 14: 3627-3634 (1995). PDF
Wiemer, E. A. C., Nuttley, W. M., Bertolaet, B. L., Li, X., Francke, U., Wheelock, M. J., Anne, U. K., Johnson, K. R., Subramani, S. The human PTS1 receptor restores peroxisomal protein import in cells from patients with fatal peroxisomal disorders. J. Cell Biol. 130: 51-65 (1995). PDF
Walton, P. A., Hill, P. E., Subramani, S. Import of stably-folded proteins into peroxisomes. Mol. Biol. Cell, 6: 675-683 (1995). PDF
Birkenbihl, R. P., Subramani, S. The rad21 gene product of Schizosaccharomyces pombe is a cell-cycle-regulated phosphoprotein essential for chromosome segregation and nuclear organization during mitosis. J. Biol. Chem. 270: 7703-7711 (1995). PDF
Wiemer, E. A. C., Subramani, S. Protein import deficiencies in human peroxisomal disorders. Mol. Genet. Med. 4:119-152 (1994). PDF
Heyman, J. A., Monosov, E., Subramani, S. Role of the PAS1 gene of Pichia pastoris in peroxisome biogenesis. J. Cell Biol. 127:1259-1273 (1994). PDF
Walton, P. A., Wendland, M., Subramani, S., Rachubinski, R. A., Welch, W. J. Involvement of 70-kD heat-shock proteins in peroxisomal import. J. Cell Biol. 125:1037-1046 (1994). PDF
Alvares, K., Fan, C. V., Dadras, S., Yeldandi, A. V., Rachubinski, R. A., Capone, J. P., Subramani, S., Iannaccone, P. M., Rao, M. S., Reddy, J. K. An upstream region of the enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase gene directs luciferase expression in liver in response to peroxisome proliferators in transgenic mice. Cancer Res. 54: 2303-2306 (1994). PDF
Ferguson, A. T., Subramani, S. Complex functional interactions at the early enhancer of the PQ strain of BK virus. J. Virol. 68: 4274-4286 (1994). PDF
Long, K. E., Sunnerhagen, P., Subramani, S. The Schizosaccharomyces pombe rad1 gene consists of 3 exons and the cDNA sequence is partially homologous to the Ustilago maydis REC1 cDNA. Gene, 148:155-159 (1994). PDF
Glover, J. R., Andrews, D. W., Subramani, S., Rachubinski, R. A. Mutagenesis of the amino-targeting signal of Saccharomyces cerevisiae 3-ketoacyl-CoA thiolase reveals conserved amino acids required for import into peroxisomes in vivo. J. Biol. Chem. 269: 7558-7563 (1994). PDF
Carr, A. M., Schmidt, H., Kirchhoff, S., Muriel, W. J., Sheldrick, K. S., Griffiths, D. J., Nur Basmacioglu, C., Subramani, S., Clegg, M., Nasim, A., Lehmann, A. R. The rad16 gene of Schizosaccharomyces pombe: a homologue of the RAD1 gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 14: 2029-2040 (1994). PDF
Spong, A., Subramani, S. Cloning and characterization of PAS5: A gene required for peroxisome biogenesis in the methylotropic yeast Pichia pastoris. J. Cell Biol. 123: 535-548 (1993). PDF
Wendland, M., Subramani, S. Presence of cytoplasmic factors functional in peroxisomal protein import implicates organelle-associated defects in several human peroxisomal disorders. J. Clin. Invest. 92: 2462-2468 (1993). PDF
Subramani, S. Protein import into peroxisomes and biogenesis of the organelle. Annu. Rev. Cell Biol. 9: 445-478 (1993). PDF
Marcus, S.L., Miyata, K.S., Zhang, B., Subramani, S., Rachubinski, R.A. and Capone, J.P. Diverse peroxisome proliferator activated receptors bind to the peroxisome proliferator responsive elements of the rat hydratase-dehydrogenase and fatty acyl-CoA oxidase genes but differentially induce expression. Proc Natl. Acad. Sci. USA., 90: 5723-5727 (1993). PDF
Zhang, B., Marcus, S.L., Miyata, K.S., Subramani, S., Capone, J.P. and Rachubinski, R.A. Characterization of protein/DNA interactions within the peroxisome proliferator-responsive element of the rat hydratase-dehydrogenase gene. J. Biol. Chem. 268:12939-12945 (1993). PDF
McCollum, D. M., Monosov, E. and Subramani, S. The pas8 mutant of Pichia pastoris exhibits the peroxisomal protein import deficiencies of Zellweger Syndrome cells – The PAS8 protein binds the COOH-terminal tripeptide peroxisomal targeting signal and is a member of the TPR protein family. J. Cell Biol.121: 761-774 (1993). PDF
Wendland, M. and Subramani, S. Cytosol dependent peroxisomal protein import in a permeabilized cell system. J. Cell Biol. 120: 675-685 (1993). PDF
Birkenbihl, R. and Subramani, S. Cloning and characterization of rad21, an essential gene of Schizosaccharomyces pombe involved in DNA double-strand-break repair. Nucl. Acids Res. 20: 6605-6611 (1992). PDF
Swinkels, B.W., Gould, S.J. and Subramani, S. Targeting efficiencies of various permutations of the consensus C-terminal tripeptide peroxisomal targeting signal. FEBS Lett. 305:133-136 (1992). PDF
Blattner, J., Swinkels, B., Dörsam, M., Prospero, T., Subramani, S. and Clayton, C. Glycosome assembly in trypanosomes: variations in the acceptable degeneracy of a C-terminal microbody targeting signal. J. Cell Biol., 119:1129-1136 (1992). PDF
Zhang, B., Marcus, S.L., Sajjadi, F., Subramani, S., Alvares, K., Reddy, J.K., Rachubinski, R.A. and Capone, J.P. Identification of a peroxisome proliferator response element upstream of the gene encoding rat peroxisomal enoyl-CoA hydratase/3-hydroxyacyl CoA dehydrogenase. Proc. Natl. Acad. Sci. USA, 89: 7541-7545 (1992). PDF
Subramani, S. Mechanisms of protein transport into microbodies. In Membrane Biogenesis and Protein Targeting, New Comprehensive Biochemistry, (W. Neupert and R. Lill, eds), Elsevier, The Netherlands, Ch 17, pp 221-229 (1992). PDF
Jimenez, G., Yucel, J., Rowley, R. and Subramani, S. The rad3+ gene of Schizosaccharomyces pombe is involved in multiple checkpoint functions and in DNA repair. Proc. Natl. Acad. Sci. USA 89: 4952-4956 (1992). PDF
Seaton, B.L., Yucel, J., Sunnerhagen, P. and Subramani, S. Isolation and characterization of the Schizosaccharomyces pombe rad3+ gene which is involved in the DNA damage and DNA synthesis checkpoints. Gene, 119: 83-89 (1992). PDF
Distel, B., Gould, S.J., Voorn-Brouwer, T., van der Berg, M. Tabak, H., and Subramani, S. The carboxy-terminal tripeptide Serine-Lysine-Leucine of firefly luciferase is necessary but not sufficient for peroxisomal import in yeast. New Biologist 4:157-165 (1992). PDF
Gould, S.J., McCollum, D., Spong, A.P., Heyman, J.A. and Subramani, S. Development of the yeast Pichia pastoris as a model organism for a genetic analysis of peroxisome assembly. Yeast, 8: 613-628 (1992). PDF
Walton, P.A., Gould, S.J., Rachubinski, R.A., Subramani, S. and Feramisco, J.R. Transport of microinjected alcohol oxidase from Pichia pastoris into vesicles in mammalian cells: Involvement of the peroxisomal targeting signal. J. Cell Biol., 118: 499-508 (1992). PDF
Walton, P.A., Gould, S.J., Feramisco, J.R. and Subramani, S. Transport of microinjected proteins into peroxisomes of mammalian cells: Inability of Zellweger cell lines to import proteins with the SKL peroxisomal targeting signal. Mol. Cell Biol. 12: 531-541 (1992). PDF
Rowley, R., Subramani, S., and Young, P.G. Checkpoint controls in Schizosaccharomyces pombe: rad1. EMBO. J. 11:1335-1342 (1992). PDF
Subramani, S. Targeting of proteins into the peroxisomal matrix. J. Memb. Biol. 125: 99-106 (1992). PDF
Sajjadi, F.G., Pasquale, E., and Subramani, S. Identification of a new eph-related receptor tyrosine kinase gene from mouse and chicken that is developmentally regulated and encodes at least two forms of the receptor. New Biologist 3: 769-778 (1991). PDF
Swinkels, B.W., Gould, S.J., Bodnar, A.G., Rachubinski, R.A., and Subramani, S. A novel cleavable peroxisomal targeting signal at the amino terminus of the rat 3-ketoacyl-CoA thiolase. EMBO J. 10: 3255-3261 (1991). PDF
Subramani, S. Radiation-resistance in Schizosaccharomyces pombe. Mol. Microbiol. 5: 2311-2314 (1991). PDF
Subramani, S. Peroxisomal targeting signals-the beginning and the end. Curr. Sci., Indian Acad. Sci. 61: 28-32 (1991).
Hodge, V.J., Gould, S.J., Subramani, S., Moser, H.W. and Krisans, S.K. Normal cholesterol synthesis in human cells requires functional peroxisomes. Biochem. Biophys. Res. Commun. 181: 537-541 (1991). PDF
Keller, G.-A., Krisans, S.K., Gould, S.J., Sommer, J., Wang, C.C., Schliebs, W., Kunau, W., Brody, S. and Subramani, S. Evolutionary conservation of a microbody targeting signal that targets proteins to peroxisomes, glyoxysomes and glycosomes. J. Cell. Biol. 114: 893-904 (1991). PDF
Flagstad, T., Sundsfjord, A., Arthur, R.R., Pedersen, M., Traavik, T., and Subramani, S. Amplification and sequencing of the control regions of BK and JC virus from human urine by polymerase chain reaction. Virology 180: 553-560 (1991). PDF
Gould, S.J. and Subramani, S. Translocation of proteins into peroxisomes, in Intracellular Trafficking of Proteins (ed. C.J.Steer and J. Hanover), Cambridge University Press, Cambridge, England, Chapt. 20, pp 696-730 (1991).
Wright, R., Keller, G.-A., Gould, S.J., Subramani, S. and Rine, J. Cell-type control of membrane biogenesis induced by HMG-CoA reductase overproduction. New Biol., 2: 915-921 (1990). PDF
Sundsfjord, A., Johansen, T., Flaegstad, T., Moens, U., Villand, P., Subramani, S. and Traavik, T. At least two types of control regions can be found among naturally occurring BK virus strains. J. Virol., 64: 3864-3871 (1990). PDF
Sunnerhagen, P., Seaton, B.L., Nasim, A. and Subramani, S. Cloning and analysis of a gene involved in DNA repair and recombination, the rad1 gene of Schizosaccharomyces pombe. Mol. Cell. Biol., 10: 3750-3760 (1990). PDF
Gould, S.J., Keller, G.-A., Schneider, M., Howell, S.H., Garrard, L.J., Goodman, J.M., Distel, B., Tabak, H. and Subramani, S. Peroxisomal protein import is conserved between yeast, plants, insects and mammals. EMBO J., 9: 85-90 (1990). PDF
Gould, S.J., Krisans, S. Keller, G., and Subramani, S. Antibodies directed against the peroxisomal targeting signal of firefly luciferase recognize multiple mammalian peroxisomal proteins. J. Cell Biol., 110: 27-34 (1990). PDF
1975 – 1989
Zijlstra, M., Li, E., Sajjadi, F., Subramani, S. and Jaenisch, R. Germ-line transmission of a disrupted ß2-microglobulin gene produced by homologous recombination in embryonic stem cells. Nature, 342: 435-438 (1989). PDF
Gould, S.J., Subramani, S. and Scheffler, I.E. Use of the polymerase chain reaction for homology probing: isolation of partial cDNA or genomic clones encoding the iron-sulfur protein of succinate dehydrogenase from several species. Proc. Natl. Acad. Sci. USA, 86:1934-1938 (1989). PDF
Gould, S.J., Keller, G.-A., Hosken, N., Wilkinson, J. and Subramani, S. A conserved tripeptide sorts proteins to peroxisomes. J. Cell. Biol., 108:1657-1664 (1989). PDF
Cassill, J.A. and Subramani, S. A naturally occurring deletion in the enhancer repeats of the human papovavirus BK optimizes early enhancer function at the expense of late promoter activity. Virology, 170: 296-298 (1989). PDF
Cassill, J.A., Deyerle, K.L. and Subramani, S. Unidirectional deletion and linker scan analysis of the late promoter of the human papovavirus BK. Virology, 169: 172-181 (1989). PDF
Deyerle, K. and Subramani, S. Human papovavirus BK early gene regulation in non-permissive cells. Virology, 169: 385-396 (1989). PDF
Deyerle, K., Sajjadi, F.G. and Subramani, S. Analysis of the origin of DNA replication of the human papovavirus BK. J. Virol., 63: 356-365 (1989). PDF
Seaton, B. and Subramani, S. Transfer of chromosomal sequences onto plasmids by gene conversion. In: Gene Transfer and Gene Therapy, ICN-UCLA Symp. Mol. Biol., pp 417-430, Alan Liss Inc (1989).
Subramani, S. Analysis of mitotic recombination in mammalian cells using SV40 and SV40-derived vectors. Mutation Res., 220: 221-234 (1989). PDF
Gould, S.J., Keller, G.-A. and Subramani, S. Identification of peroxisomal targeting signals located at the carboxy terminus of four peroxisomal proteins. J. Cell Biol., 107: 897-905 (1988). PDF
Gould, S.J. and Subramani, S. Firefly luciferase as a tool in molecular and cell biology. Analyt. Biochem., 175: 5-13 (1988). PDF
Cassill, J.A. and Subramani, S. The late promoter of the human papovavirus BK is contained within the early promoter enhancer region. Virology, 166: 175-185 (1988). PDF
Deyerle, K.L. and Subramani, S. Linker scan analysis of the early regulatory region of the human papovavirus BK. J. Virol., 62: 3378-3387 (1988). PDF
O’Connor, D.T. and Subramani, S. Do transcriptional enhancers also augment DNA replication? Nucl. Acids Res., 16:11207-11222 (1988). PDF
Subramani, S. and DeLuca, M. Applications of the firefly luciferase as a reporter gene. In: Genetic Engineering – Principles and Practice (J. Setlow and A. Hollaender, Eds.), Vol. 10, pp 75-89, Plenum Press, New York, (1988).
Subramani, S. and Seaton, B. Homologous recombination in mitotically dividing mammalian cells. In: ASM book on Genetic Recombination (R. Kucherlapati and G.R. Smith, Eds.), Chapt. 18, 549-573 (1988).
Gould, S.J., Keller, G.-A. and Subramani, S. Identification of a peroxisomal targeting signal at the carboxy-terminus of firefly luciferase. J. Cell. Biol. 105: 2923-2931 (1987). PDF
Keller, G., Gould, S., DeLuca, M. and Subramani, S. Firefly luciferase is targeted to peroxisomes in mammalian cells. Proc. Natl. Acad. Sci. USA 84:3264-3268 (1987). PDF
Rubnitz, J. and Subramani, S. Correction of deletions in mammalian cells by gene conversion. Somatic Cell and Molecular Genetics. 13:183-190 (1987). PDF
Deyerle, K.L., Cassill, J.A., and Subramani, S. Analysis of the early regulatory region of the human papovavirus BK. Virology 158: 181-193 (1987). PDF
de Wet, J.R., Wood, K.V., DeLuca, M., Helinski, D.R. and Subramani, S. Firefly luciferase gene: Structure and expression in mammalian cells. Mol. Cell. Biol. 7: 725-737 (1987). PDF
Peabody, D., Subramani, S. and Berg, P. Effect of upstream reading frames on translation efficiency in SV40 recombinants. Mol. Cell. Biol. 6: 2704-2711 (1986). PDF
Rubnitz, J. and Subramani, S. Extrachromosomal and chromosomal gene conversion in mammalian cells. Mol. Cell. Biol. 6:1608-1614 (1986). PDF
Subramani, S. Rescue of chromosomal T-antigen sequences onto extrachromosomally replicating, defective simian virus 40 DNA by homologous recombination. Mol. Cell. Biol. 6:1320-1325 (1986). PDF
Subramani, S. and Rubnitz, J. Expression vectors to study homologous recombination in mammalian cells. Proceedings of Biotechnology Conference sponsored by Southern Petrochemical Industries Corporation, Madras, India (1985).
Rubnitz, J. and Subramani, S. Rapid assay for extrachromosomal homologous recombination in monkey cells. Mol. Cell. Biol. 5:529-537 (1985). PDF
Subramani, S. and Rubnitz, J. Recombination events following transient infection and stable integration of DNA into mouse cells. Mol. Cell. Biol. 5:659-666 (1985). PDF
Rubnitz, J. and Subramani, S. Minimum amount of homology for homologous recombination in mammalian cells. Mol. Cell. Biol. 4:2253-2258 (1984). PDF
Pratt, D.G. and Subramani, S. Nucleotide sequence of the Escherichia coli xanthine-guanine phosphoribosyl transferase gene. Nucl. Acids Res. 11:8817-8823 (1983). PDF
Subramani, S. and Southern, P. Analysis of gene expression using simian virus 40 vectors. Anal. Biochem. 135:1-15 (1983). PDF
Jolly, D.J., Esty, A.C., Subramani, S., Friedmann, T. and Verma, I.M. Elements in the long-terminal repeat of murine retroviruses enhance stable transformation by thymidine kinase gene. Nucleic Acids Res. 11:1855-1872 (1983). PDF
Subramani, S. and Berg, P. Homologous and non-homologous recombination in monkey cells. Mol. Cell. Biol. 3:1040-1052 (1983). PDF
Subramani, S. and Schachman, H.K. Linkage between reactivity of sulfhydryl groups and subunit interactions in aspartate transcarbamoylase. J. Biol. Chem. 257:12219-12223 (1982). PDF
Subramani, S., Mulligan, R.C. and Berg, P. Expression of the complementary DNA for mouse dihydrofolate reductase in simian virus 40 vectors. Mol. and Cell. Biol. 1:854-864 (1981). PDF
Subramani, S. and Schachman, H.K. The mechanism of dissociation of aspartate transcarbamoylase by p-mercuribenzoate. J. Biol.Chem. 256:1255-1262 (1981). PDF
Fraley, R., Subramani, S., Berg, P. and Papahadjopoulos, D. Introduction of liposome-encapsulated SV40 DNA into cells. J. Biol. Chem. 255:10431-10435 (1980). PDF
Subramani, S. and Schachman, H.K. Mechanism of disproportionation of aspartate transcarbamoylase molecules lacking one regulatory subunit. J. Biol. Chem. 255: 8136-8143 (1980). PDF
Subramani, S. Role of intersubunit bonding domains in aspartate transcarbamoylase. Ph.D. Thesis, University of California, Berkeley (1979).
Subramani, S., Bothwell, M.A., Gibbons, I., Yang, Y.R. and Schachman, H.K. Ligand-promoted weakening of intersubunit bonding domains in aspartate transcarbamoylase. Proc. Natl. Acad. Sci. USA 74: 3777-3781 (1977). PDF
Balasubramanian, D., Subramani, S. and Kumar, C. Modification of a model membrane structure by embedded photochrome. Nature 254: 252-254 (1975). PDF