The Subramani lab has pioneered research in peroxisome biogenesis and turnover (homeostasis) for over 35 years. The efforts of the lab are currently focused on how peroxisomes respond to abiotic stress and how peroxisomes arise de novo from the endoplasmic reticulum (ER). Peroxisomes proliferate in response to the inactivation of Kar2 in the ER, or in the presence of tunicamycin, an inhibitor of protein N-glycosylation, or DTT, which causes reductive stress. Although all these stresses activated the unfolded protein response (UPR) pathways, the classical players that induce the UPR (Ire1, Hac1, Gn4) are not required for peroxisome induction by these stressors. Our recent work has revealed that in the presence of misfolded proteins in the ER or cytosol, peroxisomes proliferate, primarily by activating de novo biogenesis, and to a lesser extent, by inducing growth and division, rather than by reduced pexophagy. Among the signaling pathways implicated are the activation of peroxisome proliferation by Tor1 inhibition or the inactivation of cytosolic Ssa1. This peroxisome induction is conserved from yeast to humans and the presence of peroxisomes is essential for survival of stress, making it likely that peroxisomes play a role in many protein-folding disorders.
Publications: https://scholar.google.co.in/citations?user=xT2iM5kAAAAJ&hl=en
https://www.researchgate.net/scientific-contributions/Suresh-Subramani-39543305
Our past accomplishments are captured in the following publications:
Identification and Conservation of the First Peroxisomal Targeting Signals (PTSs)
Keller, G., Gould, S., DeLuca, M., Subramani, S. Firefly luciferase is targeted to peroxisomes in mammalian cells. PNAS 84: 3264-3268 (1987).
Gould, S.J., Keller, G.-A., Subramani, S. Identification of a peroxisomal targeting signal at the carboxy-terminus of firefly luciferase. JCB, 105: 2923-2931 (1987).
Gould, S.J., Keller, G.-A., Subramani, S. Identification of peroxisomal targeting signals located at the carboxy terminus of four peroxisomal proteins. JCB, 107: 897-905 (1988).
Gould, S.J., Keller, G.-A., Hosken, N., Wilkinson, J., Subramani, S. A conserved tripeptide sorts proteins to peroxisomes. JCB, 108:1657-1664 (1989).
Gould, S.J., Keller, G.-A., Schneider, M., Howell, S.H., Garrard, L.J., Goodman, J.M., Distel, B., Tabak, H., Subramani, S. Peroxisomal protein import is conserved between yeast, plants, insects and mammals. EMBO J, 9: 85-90 (1990).
Gould, S.J., Krisans, S. Keller, G., Subramani, S. Antibodies directed against the peroxisomal targeting signal of firefly luciferase recognize multiple mammalian peroxisomal proteins. JCB, 110: 27-34 (1990).
Keller, G.-A., Krisans, S.K., Gould, S.J., Sommer, J., Wang, C.C., Schliebs, W., Kunau, W., Brody, S., Subramani, S. Evolutionary conservation of a signal that targets proteins to peroxisomes, glyoxysomes and glycosomes. JCB, 114: 893-904 (1991).
Swinkels, B.W., Gould, S.J., Subramani, S. Targeting efficiencies of various permutations of the consensus C-terminal tripeptide peroxisomal targeting signal. FEBS Lett, 305: 133-136 (1992).
Blattner, J., Swinkels, B., Dörsam, M., Prospero, T., Subramani, S. and Clayton, C. Glycosome assembly in trypanosomes: variations in the acceptable degeneracy of a C-terminal microbody targeting signal. JCB, 119: 1129-1136 (1992).
Swinkels, B.W., Gould, S.J., Bodnar, A.G., Rachubinski, R.A., Subramani, S. A novel cleavable peroxisomal targeting signal at the amino terminus of the rat 3-ketoacyl-CoA thiolase. EMBO J, 10: 3255-3261 (1991).
Glover, J. R., Andrews, D. W., Subramani, S., Rachubinski, R. A. Mutagenesis of the amino-targeting signal of Saccharomyces cerevisiae 3-ketoacyl-CoA thiolase reveals conserved amino acids required for import into peroxisomes in vivo. JBC, 269: 7558-7563 (1994).
PTS and mPTS/PMP Receptors
McCollum, D. M., Monosov, E. and Subramani, S. The pas8 mutant of Pichia pastoris exhibits the peroxisomal protein import deficiencies of Zellweger Syndrome cells – The PAS8 protein binds the COOH-terminal tripeptide peroxisomal targeting signal and is a member of the TPR protein family. JCB, 121: 761-774 (1993).
Terlecky, S.R., Nuttley, W. M., McCollum, D., Sock, E., Subramani, S. The Pichia pastoris peroxisomal protein, PAS8p, is the receptor for the carboxy-terminal, tripeptide peroxisomal targeting signal. EMBO J,14: 3627-3634 (1995).
Wiemer, E. A. C., Nuttley, W. M., Bertolaet, B. L., Li, X., Francke, U., Wheelock, M. J., Anne, U. K., Johnson, K. R., Subramani, S. The human PTS1 receptor restores peroxisomal protein import in cells from patients with fatal peroxisomal disorders. JCB, 130: 51-65 (1995).
Wiemer, E. A. C., Terlecky, S. R., Nuttley, W. M., Subramani, S. Characterization of the yeast and human receptors for the carboxy-terminal, tripeptide peroxisomal targeting signal. Cold Spring Harbor Symp. Quant. Biol. Vol LX, 637-648 (1995).
Elgersma, Y., Elgersma-Hooisma, M., Wenzel, T., McCaffery, J.M., Farquhar, M.G., Subramani, S. A mobile PTS2-receptor for peroxisomal protein import in Pichia pastoris. J. Cell Biol., 140: 807-820 (1998).
Snyder, W. B., Faber, K. N., Wenzel, T. J,. Koller, A., Lüers, G. H., Rangell, L., Keller, G. A., Subramani, S. Pex19p interacts with Pex3p and Pex10p and is essential for peroxisome biogenesis in Pichia pastoris. MBC, 10: 1745-1761 (1999).
Snyder, W.B., Koller, A., Choy, A.J., Subramani, S. The peroxin Pex19p interacts with multiple, integral membrane proteins at the peroxisomal membrane. JCB, 149: 1171-1177 (2000).
Agrawal, G., Shang, H.H., Xia, Z.-J., Subramani, S. Functional regions of the peroxin Pex19 necessary for peroxisome biogenesis. JBC, 292: 11547–11560 (2017).
Zientara-Rytter. K.M., Mahalingam, S.S., Farré, J.C., Carolino, K., Subramani, S. Recognition and chaperoning by Pex19, followed by trafficking and membrane insertion of the peroxisome proliferation protein, Pex11. Cells, 11: 157 (2022).
PTS Receptor/Co-receptor Dynamics Including Quality Control by RADAR and Autophagy
Dammai, V., Subramani, S. The human peroxisomal targeting signal receptor, Pex5p, is translocated into the peroxisome matrix and recycled to the cytosol. Cell, 105: 187-196 (2001).
Wang. W., Subramani, S. Role of PEX5 ubiquitination in maintaining peroxisome dynamics and homeostasis. Cell Cycle, 6: 2037-2045 (2017).
Elgersma, Y., Elgersma-Hooisma, M., Wenzel, T., McCaffery, J.M., Farquhar, M.G., Subramani, S. A mobile PTS2-receptor for peroxisomal protein import in Pichia pastoris. JCB, 140: 807-820 (1998).
Léon, S., Zhang, L., McDonald, H., Yates III, J., Cregg, J. M., Subramani, S. Dynamics of the peroxisomal import cycle of PpPex20p: ubiquitin-dependent localization and regulation. JCB, 172: 67-78 (2006).
Léon, S., Subramani, S. A conserved cysteine residue of Pichia pastoris Pex20p is essential for its recycling from the peroxisome to the cytosol. JBC, 282: 7424-30 (2007).
Liu, X., Subramani, S. Unique requirements for mono- and poly-ubiquitination of the peroxisomal targeting signal co-receptor, Pex20. JBC, 288: 7230-7240 (2013).
Hagstrom D, Ma C, Guha-Polley S, Subramani S. The unique degradation pathway of the PTS2 receptor, Pex7, is dependent on the PTS receptor/coreceptor, Pex5 and Pex20. MBC, 25: 2634-43 (2014).
Wang, X., Wang, P., Zhang, Z., Farré, J.C., Li. X., Wang. R., Xia. Z., Subramani. S., Ma, C. The autophagic degradation of cytosolic pools of peroxisomal proteins by a new selective autophagy pathway. Autophagy, 21: 1-13 (2019).
Involvement of Hps70 and Other Chaperones in Peroxisomal Protein Import
Matrix Protein Import
Walton, P. A., Wendland, M., Subramani, S., Rachubinski, R. A., Welch, W. J. Involvement of 70-kD heat-shock proteins in peroxisomal import. JCB, 125: 1037-46 (1994).
Léon, S., Subramani, S. The role of shuttling targeting signal receptors and heat-shock proteins in peroxisomal matrix protein import. The Enzymes, Vol XXV, Chapter 20: 513-528 (2007).
PMP Import
Snyder, W.B., Koller, A., Choy, A.J., Subramani, S. The peroxin Pex19p interacts with multiple, integral membrane proteins at the peroxisomal membrane. JCB, 149: 1171-1177 (2000).
Zientara-Rytter. K.M., Mahalingam, S.S., Farré, J.C., Carolino, K., Subramani, S. Recognition and chaperoning by Pex19, followed by trafficking and membrane insertion of the peroxisome proliferation protein, Pex11. Cells, 11: 157 (2022).
Import of Folded and Oligomeric Proteins into the Peroxisome Matrix
Walton, P. A., Hill, P. E., Subramani, S. Import of stably folded proteins into peroxisomes. MBC, 6: 675-83 (1995).
ER Involvement in Peroxisome Biogenesis
Elgersma, Y., Kwast, L., van den Berg, M., Snyder, W. B., Distel, B., Subramani, S., Tabak, H. F. Overexpression of Pex15p, a phosphorylated peroxisomal integral membrane protein required for peroxisome assembly in S. cerevisiae, causes proliferation of the endoplasmic reticulum membrane. EMBO J, 16: 7326-41 (1997).
Yan, M., Rachubinski, D. A., Joshi, .S, Rachubinski, R. A., Subramani S. Dysferlin domain-containing proteins, Pex30p and Pex31p, localized to two compartments, control the number and size of oleate-induced peroxisomes in Pichia pastoris. MBC, 19: 885-98 (2008).
Agrawal, G., Joshi, S.S., Subramani, S. Cell-free sorting of peroxisomal membrane proteins from the endoplasmic reticulum. PNAS, 108: 9113-8 (2011).
Agrawal, G., Fassas, S. N., Xia, Z., Subramani, S. Distinct requirements for intra-ER sorting and budding of peroxisomal membrane proteins from the endoplasmic reticulum. JCB, 212: 335-48 (2016).
Farre, J.-C., et al. A new yeast peroxin, Pex36, a functional homologue of mammalian PEX16, functions in the ER–to-peroxisome traffic of peroxisomal membrane proteins. JMB, 429: 3743–3762 (2017).
Shukla, N.S., Neal, M.L., Farre, J.-C., Mast, F., Truong, L., Simon, T., Miller, L.R., Aitchison, J.D., Subramani, S. TOR and heat shock response pathways regulate peroxisome biogenesis during proteotoxic stress. Bioarxiv 12.31.630809. Epub 12-31-2024. (2024).
Influence of Other Subcellular Compartments on Peroxisome Homeostasis
Membrane Contact Sites
Farré, J.-C., Mahalingam, S.S., Proietto, M., Subramani, S. Peroxisome biogenesis, membrane contact sites, and quality control. EMBO Rep, doi: 10.15252/embr.201846864 (2018).
Mitochondrial, Nuclear and Cytosolic Influence
Farré, J.C., Carolino, K., Devanneaux, L., Subramani, S. OXPHOS deficiencies affect peroxisome proliferation by downregulating genes controlled by the SNF1 signaling pathway. ELife, doi: 10.7554/eLife.75143 (2022).
ER, Cytosol and Nucleus
Shukla, N.S., Neal, M.L., Farre, J.-C., Mast, F., Truong, L., Simon, T., Miller, L.R., Aitchison, J.D., Subramani, S. TOR and heat shock response pathways regulate peroxisome biogenesis during proteotoxic stress. Bioarxiv, doi: 10.1101/2024.12.31.630809 (2024).
Vacuolar Role
Farré, J.C., Manjithaya, R., Mathewson, R.D., Subramani, S. PpAtg30 tags peroxisomes for turnover by selective autophagy. Dev. Cell, 14: 365-76 (2008).
Farré, J. -C., Mathewson, R. D., Manjithaya, R., Subramani, S. Roles of Pichia pastoris Uvrag in vacuolar protein sorting and the phosphatidylinositol 3-kinase complex in phagophore elongation in autophagy pathways. Autophagy, 6: 86-99 (2010).
Control of Peroxisome Size and Number by Peroxins, Mitochondria and Stress
Yan, M., Rachubinski, D. A,, Joshi, S., Rachubinski, R. A., Subramani, S. Dysferlin domain-containing proteins, Pex30p and Pex31p, localized to two compartments, control the number and size of oleate-induced peroxisomes in Pichia pastoris. MBC, 19: 885-98 (2008).
Farré, J.C., Carolino, K., Devanneaux, L., Subramani, S. OXPHOS deficiencies affect peroxisome proliferation by downregulating genes controlled by the SNF1 signaling pathway. ELife, doi: 10.7554/eLife.75143. (2022).
Shukla, N.S., Neal, M.L., Farre, J.-C., Mast, F., Truong, L., Simon, T., Miller, L.R., Aitchison, J.D., Subramani, S. TOR and heat shock response pathways regulate peroxisome biogenesis during proteotoxic stress. Bioarxiv 12.31.630809. Epub 12-31-2024. (2024).
Development of in vitro Systems for Matrix Protein Import and Peroxisome Biogenesis
PTS1 Protein Import
Wendland, M., Subramani, S. Cytosol-dependent peroxisomal protein import in a permeabilized cell system.JCB, 120: 675-85 (1993).
Walton, P. A., Gould, S. J., Rachubinski, R. A., Subramani, S., Feramisco, J.R. Transport of microinjected alcohol oxidase from Pichia pastoris into vesicles in mammalian cells: involvement of the peroxisomal targeting signal. JCB, 118: 499-508 (1992).
Walton, P. A., Gould, S. J., Feramisco, J. R., Subramani, S. Transport of microinjected proteins into peroxisomes of mammalian cells: inability of Zellweger cell lines to import proteins with the SKL tripeptide peroxisomal targeting signal. MCB, 12: 531-41 (1992).
Walton, P. A., Hill, P. E., Subramani, S. Import of stably folded proteins into peroxisomes. MBC, 6: 675-83 (1995).
Terlecky, S.R., Legakis, J.E., Hueni, S.E., Subramani, S. Quantitative analysis of peroxisomal protein import in vitro. Exper. Cell Res. 263: 98-106 (2001).
de novo Biogenesis
Agrawal, G., Joshi, S.S., Subramani, S. Cell-free sorting of peroxisomal membrane proteins from the endoplasmic reticulum. PNAS, 108: 9113-8 (2011).
Agrawal, G., Fassas, S. N., Xia, Z., Subramani, S. Distinct requirements for intra-ER sorting and budding of peroxisomal membrane proteins from the endoplasmic reticulum. J. Cell Biol., 212: 335-48 (2016).
Pexophagy, Pexophagy Receptor, Adaptors and Mechanisms
Morphological Steps in Macropexophagy and Micropexophagy
Sakai, Y., Koller, A., Rangell, L.K., Keller, G.A., Subramani, S. Peroxisome degradation by microautophagy in Pichia pastoris: identification of specific steps and morphological intermediates. JCB, 141: 625-636 (1998).
Pexophagy Receptor (first organelle-specific receptor for selective autophagy)
Farré, J.C., Manjithaya, R., Mathewson, R.D., Subramani, S. PpAtg30 tags peroxisomes for turnover by selective autophagy. Dev. Cell, 14: 365-76 (2008).
Pexophagy Adaptor
Farré, J. C., Burkenroad, A., Burnett, S. F, Subramani, S. Phosphorylation of mitophagy and pexophagy receptors coordinates their interaction with Atg8 and Atg11. EMBO Rep,14: 441-9 (2013).
Zientara-Rytter, K., Subramani, S. Mechanistic insights into the role of Atg11 in selective autophagy, JMB, 432:104-122 (2020).
Other Pexophagy Proteins
Farré, J. -C., Mathewson, R. D., Manjithaya, R., Subramani, S. Roles of Pichia pastoris Uvrag in vacuolar protein sorting and the phosphatidylinositol 3-kinase complex in phagophore elongation in autophagy pathways. Autophagy, 6: 86-99 (2010).
Stasyk, O. V, Stasyk, O. G., Mathewson, R. D., Farré, J. –C., Nazarko, V. Y., Krasovska, O. S., Subramani, S., Cregg, J. M., Sbirny, A. Atg28, a novel coiled-coil protein involved in autophagic degradation of peroxisomes in the methylotrophic yeast Pichia pastoris. Autophagy, 2: 30-38 (2006).
Nazarko, V.Y., Nazarko, T.Y., Farré, J.-C., Stasyk, O.V., Warnecke, D., Ulazewski, S., Cregg, J. M., Sibirny, A.A., Subramani, S. Atg35, a micropexophagy-specific protein that regulates micropexophagic apparatus formation in Pichia pastoris, Autophagy, 7: 375-85 (2011).
Nazarko, T. Y., Ozeki, K., Till, A., Ramakrishnan, G., Lotfi, P., Yan, M., Subramani, S. Peroxisomal Atg37 binds Atg30 or palmitoyl-CoA to regulate phagophore formation during pexophagy. JCB, 204: 541-57 (2014).
Pexophagy Mechanisms, Significance & Networks and Proteome Remodeling
Pexophagy Activation and Mechanism
Manjithaya, R.R., Jain, S. Farré, J. -C., Subramani, S. A yeast MAPK cascade regulates pexophagy but not other autophagy pathways. JCB, 189: 303-10 (2010).
Farré, J. -C., Burkenroad, A., Burnett, S.F., Subramani, S. Phosphorylation of mitophagy and pexophagy receptors coordinates their interaction with Atg8 and Atg11. EMBO Rep, 4: 441-449 (2013).
Lakhani, R., Till, A., Vogel, K., Gibson, M.A., Subramani, S. Defects in GABA metabolism affect selective autophagy pathways and are alleviated by mTOR inhibition. EMBO Mol Med, 6: 551-66 (2014).
Burnett, S.F., Farré, J.-C., Nazarko, T. Y., Subramani, S. Peroxisomal Pex3 activates selective autophagy of peroxisomes via interaction with pexophagy receptor, Atg30. JBC, 290: 8623-8631 (2015).
Zientara-Rytter, K., Ozeki, K., Nazarko, T.Y., Subramani, S. Pex3 and Atg37 compete to regulate the interaction between the pexophagy receptor, Atg30, and the Hrr25 kinase. Autophagy, 14: 368-384 (2017).
Selective Autophagy of Cytosolic Pools of Peroxisomal Proteins and Fungal Proteome Remodeling
Wang, X., Wang, P., Zhang, Z., Farré, J.C., Li. X., Wang. R., Xia. Z., Subramani. S., Ma, C. The autophagic degradation of cytosolic pools of peroxisomal proteins by a new selective autophagy pathway. Autophagy,16: 154-166 (2020).
Telusma, B., Farré, J.-C., Cui, D.S., Subramani, S., Davis, J.H. Bulk and selective autophagy cooperate to remodel a fungal proteome in response to changing nutrient availability. bioRxiv, 09.24.614842 (2024).
Autophagy Networks
Kramer, M.H., Farré, J.C., Mitra, K., Yu, M.K., Ono, K., Demchak, B., Licon, K., Flagg, M., Balakrishnan, R., Cherry, J.M., Subramani, S., Ideker, T. Active Interaction Mapping reveals the hierarchical organization of autophagy. Mol Cell, 65: 761–774 (2017).